Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## George R. Clark, Kit Yee Tsang and Margaret A. Brimble*

Chemistry Department, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail:
g.clark@auckland.ac.nz

## Key indicators

Single-crystal X-ray study
$T=85 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.047$
$w R$ factor $=0.124$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## 8'-Methoxy-3H-spiro[1-naphthofuran-2,2'-chroman]

The crystal structure of the title compound, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$, has been determined to establish the relative stereochemistry at the spiro ring junction. Each O atom adjacent to the junction lies axial to the neighbouring ring; this is presumably due to anomeric effects.

## Comment

$\beta$-Rubromycin (Brockmann et al., 1969; Brockmann \& Zeeck, 1970) is a microbial secondary metabolite (Puder et al., 2000) that inhibits human telomerase with a $50 \%$ inhibitory concentration of $3 \mu M$ (Ueno et al., 2000). $\beta$-Rubromycin contains naphthoquinone and isocoumarin rings linked to a 5,6 -spiroacetal unit. We have recently synthesized and determined the crystal structure of 5,8'-dimethoxy- 3 H -benzofuran2 -spiro-2'-chromane in order to examine the ability of the 5,6 aryl spiroacetal unit to inhibit human telomerase (Clark et al., 2005). We now report the crystal structure and synthesis of the naphtho derivative $8^{\prime}$-methoxy- $3 H$-spiro[1-naphthofuran- $2,2^{\prime}$ chromane], (2), from ketone (1). Bond lengths and angles at the spiro junction are listed in Table 1 and are unremarkable. Comparison with corresponding parameters in the structure of $5,8^{\prime}$-dimethoxy- 3 H -benzofuran-2-spiro- $2^{\prime}$-chromane reveals that each pair of listed bonds is statistically equivalent, but each pair of listed angles is statistically different. The maximum variation is, however, only $1.5^{\circ}$, and the variation is most likely due to different crystal packing forces resulting from the presence of the larger naphthalene ring system in the present compound.


## Experimental

To a stirred solution of ketone (1) ( $137 \mathrm{mg}, 0.323 \mathrm{mmol}$ ) in dichloromethane ( 2 ml ) was added $\mathrm{NaHSO}_{4} \cdot \mathrm{SiO}_{2}(272 \mathrm{mg})$ that had been heated at 393 K for 48 h (Breton, 1997). The reaction mixture was stirred at room temperature for 5 min . The catalyst was removed by filtration and washed with dichloromethane ( 25 ml ). The organic portion was concentrated in vacuo to give a yellow residue. Purification of the residue by flash column chromatography with hexaneethyl acetate (95:5) as eluent afforded the title compound, (2), as a white powder which was recrystallized from ethyl acetate to give (2) as colourless needles (yield $42 \mathrm{mg}, 41 \%$; m.p. 435-437 K). MS (EI, \%): 318 ( $M^{+}, 23$ ), 181 (100), 152 (8), 149 (37), 137 (7), 129 (27), 69 (4),

Received 26 January 2006
Accepted 13 February 2006


Figure 1
The structure of (2), showing $50 \%$ probability displacement ellipsoids for non-H atoms (Burnett \& Johnson, 1996).

57 (46), 43 (33). HR-MS (EI): found $M^{+}$, 318.12535, $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{3}$ requires 318.12559 . $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}: 3053,2978,2840,2311,1739$, $1627,1580,1476,1461,1418,1265,1215,738 . \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $2.27\left(1 \mathrm{H}, d d d, J_{3^{\prime} \mathrm{ax}, 4^{\prime} \mathrm{eq}}=5.8, J_{3^{\prime} \mathrm{axx}, 4^{\mathrm{a} x}}=12.8, J_{\text {gem }}=13.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}{ }_{\mathrm{ax}}{ }^{\prime}\right)$, $2.39\left(1 \mathrm{H}, d d d, J_{3^{\prime} \text { eq. } 4^{\mathrm{e}} \mathrm{eq}}=2.4, J_{3^{\prime} \text { eq. } 4^{\prime} \mathrm{ax}}=5.9, J_{\text {gem }} 13.2=\mathrm{Hz}, \mathrm{H}-3_{\text {eq }}\right), 2.85$ $\left(1 \mathrm{H}, d d d, J_{4^{\prime} \mathrm{eq}, 3^{\prime} \mathrm{eq}}=2.4, J_{4^{\prime} \mathrm{eq}, 3^{\prime} \mathrm{ax}}=5.8, J_{\text {gem }}=16.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}{ }_{\mathrm{eq}}\right) 3.31$ $\left(1 \mathrm{H}, d d d, J_{4^{\prime} \mathrm{axa}^{\prime}, 3^{\prime}{ }^{\mathrm{eq}}}=6.0, J_{4^{\prime}{ }^{\prime}, 3^{\prime}{ }^{\prime} \mathrm{ax}}=12.8, J_{\mathrm{gem}}=16.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}{ }_{\mathrm{ax}}\right), 3.56$ $\left(1 \mathrm{H}, d, J_{\text {gem }}=16.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}\right), 3.75(3 \mathrm{H}, s, \mathrm{OMe}), 3.89\left(1 \mathrm{H}, d, J_{\text {gem }}=\right.$ $16.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 6.73-6.78\left(2 \mathrm{H}, m, \mathrm{H}-5^{\prime}\right.$ and $\left.\mathrm{H}-7^{\prime}\right), 6.88\left(1 \mathrm{H}, t, J_{6^{\prime}, 7^{\prime}}=\right.$ $\left.J_{6^{\prime}, 5^{\prime}}=7.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.09\left(1 \mathrm{H}, d, J_{9,8}=8.8 \mathrm{~Hz}, \mathrm{H}-9\right), 7.32\left(1 \mathrm{H}, d d, J_{6,5}=\right.$ 8.1 and $\left.J_{6,7}=8.2 \mathrm{~Hz}, \mathrm{H}-6\right), 7.47\left(1 \mathrm{H}, d d, J_{5,6}=8.1\right.$ and $J_{5,4}=8.2 \mathrm{~Hz}, \mathrm{H}-$ 5), $7.60\left(1 \mathrm{H}, d, J_{4,5}=8.2 \mathrm{~Hz}, \mathrm{H}-4\right), 7.68\left(1 \mathrm{H}, d, J_{8,9}=8.8 \mathrm{~Hz}, \mathrm{H}-8\right), 7.80$ $\left(1 \mathrm{H}, d, J_{7,6}=8.2 \mathrm{~Hz}, \mathrm{H}-7\right) . \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 30.7\left(\mathrm{CH}_{2}, \mathrm{C}-4^{\prime}\right)$, $30.8\left(\mathrm{CH}_{2}, \mathrm{C}-3^{\prime}\right), 40.9\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 55.8\left(\mathrm{CH}_{3}, \mathrm{OMe}\right), 109.9$ (quat., C2), $109.9\left(\mathrm{CH}, \mathrm{C}-5^{\prime}\right.$ or $\left.\mathrm{C}^{\prime} 7^{\prime}\right), 112.1(\mathrm{CH}, \mathrm{C}-9), 117.1$ (quat., $\left.\mathrm{C}-3 \mathrm{a}\right), 120.7$ (CH, C-6'), $121.0\left(\mathrm{CH}, \mathrm{C}-5^{\prime}\right.$ or $\left.\mathrm{C}-7^{\prime}\right), 122.3$ (quat., C-4'a), $122.7(\mathrm{CH}$, C-5), 123.0 ( $\mathrm{CH}, \mathrm{C}-6$ ), 126.6 (CH, C-5), 128.6 (CH, C-7), 128.9 (CH, C-8), 129.4 (quat., C-7a), 130.5 (quat., C-4a), 141.9 (quat., C-8'a), 148.4 (quat., $\mathrm{C}-8^{\prime}$ ), 155.2 (quat., $\mathrm{C}-9 \mathrm{a}$ ).

## Crystal data

```
C}\mp@subsup{\textrm{C}}{2}{}\mp@subsup{\textrm{H}}{18}{}\mp@subsup{\textrm{O}}{3}{
Mr}=318.3
Monoclinic, P2 /c
a=5.9858 (1) A
b=13.2104 (2) \AA
c=20.4727 (3) \AA
\beta=97.066 (1) }\mp@subsup{}{}{\circ
V=1606.58(4) \AA}\mp@subsup{}{}{3
Z = 4
D}=1.316\mp@subsup{\textrm{Mg m}}{}{-3
```


## Data collection

## Siemens SMART CCD diffractometer

## $\omega$ scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.968, T_{\text {max }}=0.985$
9773 measured reflections

Mo $K \alpha$ radiation
Cell parameters from 4596 reflections
$\theta=1.8-27.1^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=85$ (2) K
Fragment cut from needle, colourless
$0.38 \times 0.20 \times 0.18 \mathrm{~mm}$

## 3466 independent reflections

 2390 reflections with $I>2 \sigma(I)$$R_{\text {int }}=0.040$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-7 \rightarrow 7$
$k=-16 \rightarrow 14$
$l=-17 \rightarrow 25$

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0563 P)^{2}\right. \\
& \quad+0.4607 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.124$
$S=1.02$
3466 reflections
217 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

| O2-C6 | $1.3848(19)$ | C7-C8 | $1.527(3)$ |
| :--- | :--- | :--- | :--- |
| O2-C9 | $1.430(2)$ | C8-C9 | $1.504(3)$ |
| O3-C12 | $1.385(2)$ | C9-C10 | $1.538(2)$ |
| O3-C9 | $1.465(2)$ | C10-C11 | $1.506(2)$ |
| C5-C6 | $1.392(2)$ | C11-C12 | $1.374(2)$ |
| C5-C7 | $1.510(2)$ |  |  |
| C6-O2-C9 | $117.34(13)$ | O3-C9-C8 | $109.49(14)$ |
| C12-O3-C9 | $106.37(13)$ | O2-C9-C10 | $105.54(14)$ |
| O2-C9-O3 | $106.86(13)$ | O3-C9-C10 | $105.53(13)$ |
| O2-C9-C8 | $112.24(14)$ | C8-C9-C10 | $116.56(15)$ |

H atoms were placed in calculated positions and refined using a riding model $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1995).

## References

Breton, G. W. (1997). J. Org. Chem. 62, 8952-8954.
Brockmann, H., Lenk, W., Schwantje, G. \& Zeeck, A. (1969). Chem. Ber. 102, 126-151.
Brockmann, H. \& Zeeck, A. (1970). Chem. Ber. 103, 1709-1726.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Clark, G. R., Tsang, K. Y. \& Brimble, M. A. (2005). Acta Cryst. E61, o2748o2749.
Puder, C., Loya, S., Hizi, A. \& Zeeck, A. (2000). Eur. J. Org. Chem. pp. 729735.

Sheldrick, G. M. (1996). SADABS. Univ. of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-1. University of Göttingen, Germany.
Siemens (1995). SHELXTL (Version 5), SMART (Version 4.050) and SAINT (Version 4.050). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Ueno, T., Takahashi, H., Mizunuma, M., Yokoyama, A., Goto, Y., Mizushina, Y., Sakaguchi, K. \& Jayashi, H. (2000). Biochemistry, 39, 5995-6002.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

